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A B S T R A C T

Cluster analysis has been recently applied to categorize gait patterns in individuals with unilateral transfemoral 
amputation (uTFA). However, conventional clustering methods largely rely on experiential knowledge of gait 
analysis, lacking a scientific foundation for feature selection. The aim of this study was to investigate if gait 
patterns could be classified using random forest and k-means clustering in individuals with uTFA. Spatiotemporal 
data and vertical ground reaction force (vGRF) were collected using an instrumented treadmill from twelve 
individuals with uTFA and twelve age-matched non-disabled individuals participated. Absolute symmetry index 
(ASI) was obtained and normalized. These parameters served as inputs for a random forest model to assess their 
importance. K-means clustering was applied to determine the optimal number of clusters according to Silhouette 
Score and the Elbow Method. Differences in demographic, spatiotemporal, and ASI parameters among clusters 
were assessed using One-way ANOVA and independent-sample Kruskal-Wallis tests. Random forest model 
revealed that swing phase and single limb support duration time symmetries were most significant for dis
tinguishing individuals with uTFA from non-disabled. The k-means identified three distinct clusters: cluster 1 
exhibited the lowest symmetry with the shortest prosthetic single limb support duration; cluster 2 displayed the 
highest symmetry with the longest prosthetic single limb support duration and intact step length; cluster 3 
demonstrated moderate symmetry with the highest cadence. This study highlights that customized rehabilitation 
targeting specific gait patterns—such as strengthening muscles to increase single-limb support and step length, 
and modulating cadence—could enhance gait performance in individuals with uTFA.

1. Introduction

Individuals with unilateral transfemoral amputation (uTFA) exhibit 
asymmetric gait pattern during walking due to partial loss of the lower 
limb and muscles on the amputated side (Winiarski et al., 2021). This 
gait asymmetry is related to multiple factors such as walking speed 
(Nolan et al., 2003), type of prosthetic components (Kaufman et al., 
2012; Petersen et al., 2010; Schaarschmidt et al., 2012), level of 
amputation (Keklicek et al., 2019), muscle strength (Heitzmann et al., 
2020; Krajbich et al., 2023; Rutkowska-Kucharska et al., 2018), 
compensatory patterns (Harandi et al., 2020), amputation surgery (Ranz 
et al., 2017), and person-dependent gait deviations. Additionally, re
sidual femur length (Bell et al., 2013), cardiorespiratory fitness (Gjovaag 

et al., 2014), prosthetic socket type (Traballesi et al., 2011), prosthetic 
alignment (Kobayashi et al., 2013; Zhang et al., 2019), and the in
dividual’s walking habits also affect the spatiotemporal parameters of 
gait. Classifying gait deviations is essential for identifying compensatory 
patterns and tailoring rehabilitation programs aimed at improving gait 
symmetry and function. It also enables objective tracking of patients’ 
progress and aids in optimizing prosthetic interventions. However, due 
to the multifaceted nature of these factors, it is challenging to holisti
cally classify gait in individuals with uTFA.

Limited studies have been conducted to categorize gait in individuals 
with uTFA (Ichimura et al., 2022). One study successfully identified 
three distinct gait clusters among individuals with uTFA using an un
supervised machine learning approach—clustering—with each cluster 
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showing significant differences in cadence and step length across 
various walking speeds (Ichimura et al., 2022). Utilizing an unsuper
vised machine learning approach is advantageous because it bypasses 
the need to consider all factors affecting gait, relying instead on direct 
data-driven pattern recognition to classify gait patterns. This approach 
has been successfully applied to identify distinct gait patterns in other 
patient populations, such as those with stroke or cerebral palsy, 
providing a means of tracking and evaluation of gait variations over time 
(Abbasi et al., 2021; Chantraine et al., 2022; Roche et al., 2014). Con
ventional classifiers that incorporate both kinematic and electromyo
graphic (EMG) data can distinguish gait phases with high accuracy 
(Mobarak et al., 2024; Tigrini et al., 2024), offering valuable insights for 
gait phases recognition in smart prostheses. Integrating such classifiers 
with gait data for individuals with uTFA could further improve loco
motion and accelerate the development of intelligent prosthetic tech
nologies. However, studies specifically focused on gait pattern 
classification in individuals with uTFA remain limited. By applying 
clustering techniques to gait data from this population, our study aims to 
objectively classify distinct gait types and ultimately inform personal
ized interventions that address specific gait deviations and rehabilita
tion needs.

However, using only a clustering algorithm has its limitation, as it 
does not reveal which specific gait features contribute most to gait 
classification. Typically, researchers select key features for model 
training based on their expertise in gait analysis. While expert input is 
valuable, relying solely on subjective judgement can reduce objectivity 
and reproducibility in feature selection, potentially limiting the gener
alizability of the findings. The random forest model can be utilized to 
calculate feature importance, aiding in identification of the most critical 
characteristics that distinguish between groups (Luo et al., 2020). By 
training the model on gait data from both able-bodied individuals and 
those with uTFA, it can assess which features most effectively differen
tiate these groups. Features that significantly contribute to the model’s 
classification accuracy are ranked higher, indicating their importance in 
capturing the unique aspects of each group’s gait pattern.

Symmetry parameters are metrics used to quantify the degree of 
bilateral symmetry, typically calculated from measured bilateral kine
matic or kinetic gait parameters (Viteckova et al., 2018). Different for
mulas can yield various values, generally represented as percentages 
within a range, such as 0 to 1, where 0 indicates perfect symmetry and 1 
indicates complete asymmetry. For individuals with uTFA, bilateral 
asymmetry is common (Schaarschmidt et al., 2012), and symmetry pa
rameters could serve as valuable indicators for assessing gait quality and 
monitoring improvement over time.

In this study, the first objective is to assess the importance of the 

features (include kinematic parameters, spatiotemporal parameters, and 
symmetry parameters derived from the spatiotemporal parameters) that 
distinguish the gait of individuals with uTFA from that of non-disabled 
using a random forest model. These features are then used to cluster 
individuals with uTFA. The second objective is to identify the gait pat
terns of different clusters. Our hypothesis is that the clustering algorithm 
can identify multiple distinct gait patterns with significant differences in 
spatiotemporal and symmetry parameters.

2. Methods

2.1. Participants

Twelve uTFA individuals (ten male and two female individuals; age: 
54 ± 7 years; time since amputation: 18.2 ± 16.5 years; body height: 
1.74 ± 0.07 m; body mass: 74.4 ± 15.4 kg; BMI: 24.5 ± 4.5 kg/m2; 
residual limb length: 22.1 ± 5.2 cm; walking speed: 1.78 ± 0.38 km/h) 
participated in this study (Table 1). The inclusion criteria were: 1) at 
least 18 years old, 2) uTFA, 3) ability to walk on a treadmill without 
using assistive devices (e.g., crutch, walker), and 4) no neuro
musculoskeletal complications other than amputation. An age-matched 
control group of twelve able-bodied individuals (nine male and three 
female individuals; age: 54 ± 7 years; body height: 1.66 ± 0.09 m; body 
mass: 66.8 ± 10.4 kg; BMI: 24.2 ± 2.1 kg/m2; walking speed: 2.33 ±
0.20 km/h) was also recruited. This study was approved by the Human 
Subjects Ethics Sub-Committee of the Hong Kong Polytechnic University 
(number: HSEARS20220719001). All participants were informed of the 
contents of the study, and consent was obtained before participation.

2.2. Protocol

The experimental setting is shown in Fig. 1. A Zebris FDM-T tread
mill (Zebris Medical GmbH, Germany) was used to collect spatiotem
poral gait parameters, including walking speed, cadence, step length, 
stride length, step width, step time, duration time of gait phases (stance 
phase, loading response, single limb support, double limb support, pre- 
swing phase, and swing phase), as well as vGRFs for both the left and 
right limbs. The test–retest reliability and validity of Zebris had been 
well established in previous studies conducted with healthy participants 
(Reed et al., 2013; Van Alsenoy et al., 2019). All individuals were asked 
to warm up on the treadmill for a minimum of 5 min (Zeni Jr and 
Higginson, 2010). They were encouraged to walk without aids, but the 
handrails were available for support if needed. All individuals walked on 
the treadmill for two trials, each lasting for one minute at a self-selected 
speed, which was determined by gradually increasing the treadmill 

Table 1 
Demographic information of individuals with unilateral transfemoral amputation.

Participants Gender Amputation 
side

Type of 
PK

K- 
level

Reason for 
amputation

Age 
(year)

Time since 
amputation 
(year)

Body 
height 
(m)

Body 
mass 
(kg)

BMI Residual 
limb length 
(cm)

Walking 
speed 
(km/h)

1 M L Mauch 4 Infection 52 6 1.76 78 25.2 20 1.79
2 M L Paso 3 Trauma 43 7 1.74 100 33.0 24.5 1.40
3 F L 3R106 

PRO
3 Trauma 56 7 1.75 93 30.4 15 1.71

4 M L 3R80 4 Cancer 54 34 1.85 71 20.8 27.8 1.21
5 M L RHEO 4 Trauma 66 53 1.79 71 22.2 17.4 2.82
6 M R TSA 4 Trauma 62 45 1.78 65 20.5 23 2.01
7 M L Paso 3 Cancer 57 7 1.77 65 20.8 19.5 1.81
8 M L Covered 4 Trauma 48 27 1.69 68 23.8 30 1.73
9 F R KX06 4 Trauma 55 5 1.56 53 21.8 23 1.70
10 M R Paso 4 Trauma 49 11 1.76 74 23.9 15 2.11
11 M L Jiguang 4 Trauma 44 4 1.78 101 31.9 31 1.50
12 M L 3R78 4 Infection 61 12 1.63 54 20.3 18.5 1.71

Abbreviations: PK: prosthetic knee; BMI: body mass index; CT: control; M: male; F: female; R: right; L: left; TSA: traditional single axis. Prosthetic knee: Mauch knee, 
Paso knee, and RHEO knee are from Ossur, Iceland; 3R106 PRO, 3R80, and 3R78 are from Ottobock, Germany; KX06 is from Endolite, India; Jiguang knee is from 
Zeanso, China.
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speed until participants confirmed that it felt comfortable and sustain
able. They all wore their own shoes during walking to ensure that the 
alignment of their prostheses remained unchanged. The gait analysis 
FDM-T module (an operation mode of the Zebris FDM-T treadmill) was 
used to collect data. Adequate rest was given between the trials to 
minimize the effects of fatigue. All individuals wore a safety harness 
during walking, which was set to an appropriate tension to ensure it 
would not interfere with the walking (Fig. 1).

2.3. Data analyses

2.3.1. Spatiotemporal and vGRF parameters
All data were processed utilizing the Zebris FDM software (Zebris 

Medical GmbH, Germany). vGRF was recorded via pressure sensors 
embedded underneath the treadmill belt at a sampling rate of 300 Hz 
and used to identify specific gait phases. Both the duration time (in 
seconds) and percentage of the gait cycle were obtained for both sides. 
The first and second peaks of the vGRF were detected using a custom 
Python script, defined as the maximum values within the first 50 % and 
last 50 % of the gait cycle, respectively. The processed vGRF output for 
the control, intact, and prosthetic limbs are presented in Supplementary 
Fig. 1, with each curve representing one participant. Additional 
spatiotemporal parameters including step length, stride length, step 
time of each side, stride time, cadence, step width, foot rotation, and 
total contact time were also collected by the treadmill. All parameters 
were defined and automatically calculated by the treadmill’s built-in 
software. The average values of all parameters across the two trials 
were calculated for inclusion in subsequent parameter calculations or 
statistical analyses.

2.3.2. Absolute symmetry index (ASI)
Absolute symmetry indices were computed for defined gait param

eters, including the first and second vGRF peaks, foot rotation, step 
length, step time and the percentage duration of each gait cycle. The ASI 
was calculated using equation (1) (Finco et al., 2023), where IL repre
sents the parameters of the intact limb, PL represents the parameters of 
the prosthetic limb. Values of ASI closer to 0 % represent a higher level 
of symmetry, and further away from 0 % indicate a lower level of 

symmetry. All the features were then normalized within 0–1 by using the 
min–max normalization (equation (2), where i indicated each sample 
(Patro and Sahu, 2015). 

ASI =
⃒
⃒
⃒
⃒

IL − PL
0.5*(IL + PL)

*100%
⃒
⃒
⃒
⃒ (1) 

ASIi
ʹ =

ASIi − min (ASI)
max (ASI) − min (ASI)

(2) 

2.3.3. Model training for random forest
The feature matrix for 12 uTFA individuals and 12 non-disabled in

dividuals was obtained (Table 2), and the dataset was split into training 
and test sets (10 uTFA individuals and 10 non-disabled individuals for 
training, and 2 uTFA individuals and 2 non-disabled individuals for 
testing). A random state was set to 62 to ensure consistent results across 
repeated runs and facilitate reproducibility. Subsequently, the random 
forest model training was conducted, constructing a total of 1000 esti
mators with a fixed random state of 62 to identify the importance of 
features that can differentiate individuals with uTFA from non-disabled.

Feature importance was then computed by the random forest model. 
The Gini Impurity was calculated using equation (3), where m indicates 
the number of samples and pi the probability of sample i. The Total 
Impurity Decrease was calculated using equations (4), (5), and (6), 
where k represents the total number of child nodes in decision tree, 
Nchildi denotes the number of samples in the i th child node, Nparent stands 
for the number of samples in the parent node, and T represents the total 
number of trees in the random forest model. For each feature j, its 
importance was determined as the cumulative impurity decrease 
divided by the sum of cumulative impurity decrease for all features 
(equation (7), with N representing the total number of features. The 
random forest model training was carried out using an open-source 
scikit-learn code (Version 1.3.2, available at https://scikit-learn.org/) 
in Python (Version 3.11). 

Gini Impurity = 1 −
∑m

i=1
p2

i (3) 

Weighted avg =
∑k

i=1

(
Nchildi

Nparent
× Gini(childi)

)

(4) 

Impurity Decrease = Gini(parent) − Weighted avg (5) 

Total Impurity Decreasej =
∑T

t=1

∑

nodesoft
Impurity Decreasej,t (6) 

Importancej =
Total Impurity Decreasej

∑N
k=1Total Impurity Decreasek

(7) 

To confirm the feature importance obtained from the random forest 
model, Maximum Relative Minimum Redundancy (MRMR) analysis was 
conducted. Each feature received an MRMR score, calculated using 
equation (8), where C represents the binary class label (0 = non-disabled 
individual, 1 = individual with uTFA), I(X;Y) denotes the mutual in
formation between two random variables, the second term captures the 
average redundancy of f with respect to all other features s, and α ∈ [0,1]
is defined weight that balances relevance and redundancy. 

MRMRscore = αI(f ;C) − (1 − α) 1
|F| − 1

∑

s∈F,s∕=f
I(f ; s) (8) 

2.3.4. Model training for k-means clustering
The feature matrix of 12 uTFA individuals was employed for k-means 

clustering (Table 2). The optimal number of clusters was determined 
using the following two evaluation methods: 1) the Silhouette Score, 
which measures cohesion within clusters and separation between clus
ters. The optimal number of clusters corresponds to the global maximum 
of this score, where cohesion is highest and clusters are most distinct; 

Fig. 1. Illustration of the experimental setting. Participants walked on a 
treadmill at their self-selected walking speed, secured by safety belt.

Y. He et al.                                                                                                                                                                                                                                       Journal of Biomechanics 191 (2025) 112920 

3 

https://scikit-learn.org/


and 2) the Elbow Method, which identifies the optimal number of 
clusters by finding the ‘elbow’ point where adding additional clusters no 
longer significantly reduces variation (Shahapure and Nicholas, 2020; 
Thorndike, 1953). To visualize the distribution of samples in two- 
dimensional space, dimensionality reduction using principal compo
nents analysis (PCA) was performed to capture the main variance in the 
dataset (Jolliffe, 2002). PCA was used exclusively for visualization, 

projecting the high-dimensional feature space onto two principal com
ponents for a clear display of the k-means clustering results. It was not 
used as input for the clustering algorithm or included in any subsequent 
statistical analyses. The overall data processing flowchart is illustrated 
in Supplementary Fig. 2.

Table 2 
Parameter summary for feature selection and statistical testing.

Parameters Units Abbreviations Random forest features K-means features Statistical test

(a) Demographic parameters
Walking speed km/h WS Y Y Y
Age year — N N Y
Time since amputation year — N N Y
Body height m — N N Y
Body mass kg — N N Y
BMI kg/m2 — N N Y
Residual limb length cm — N N Y

(b) Spatiotemporal parameters
Double limb support duration time % DLS Y Y Y
Stride time s SDT Y Y Y
Cadence steps/min — Y Y Y
Stride length cm SDL Y Y Y
Step width cm SPW Y Y Y
Total contact time s TC Y Y N

Stance phase duration time of prosthetic limb s STA PL N N Y
Stance phase duration time of intact limb s STA IL N N Y
Loading response duration time of prosthetic limb s LR PL N N Y
Loading response duration time of intact limb s LR IL N N Y
Single limb support duration time of prosthetic limb s SLS PL N N Y
Single limb support duration time of intact limb s SLS IL N N Y
Pre-swing duration time of prosthetic limb s PS PL N N Y
Pre-swing duration time of intact limb s PS IL N N Y
Swing phase duration time of prosthetic limb s SW PL N N Y
Swing phase duration time of intact limb s SW IL N N Y
Double limb support duration time s DLS N N Y
Stance phase duration time of prosthetic limb % STA PL N N Y
Stance phase duration time of intact limb % STA IL N N Y
Loading response duration time of prosthetic limb % LR PL N N Y
Loading response duration time of intact limb % LR IL N N Y
Single limb support duration time of prosthetic limb % SLS PL N N Y
Single limb support duration time of intact limb % SLS IL N N Y
Pre-swing duration time of prosthetic limb % PS PL N N Y
Pre-swing duration time of intact limb % PS IL N N Y
Swing phase duration time of prosthetic limb % SW PL N N Y
Swing phase duration time of intact limb % SW IL N N Y
Step time of prosthetic limb s SPT PL N N Y
Step time of intact limb s SPT IL N N Y
Step length of prosthetic limb cm SPL PL N N Y
Step length of intact limb cm SPL IL N N Y
First peak of vGRF of prosthetic limb %BM FP PL N N Y
First peak of vGRF of intact limb %BM FP IL N N Y
Second peak of vGRF of prosthetic limb %BM SP PL N N Y
Second peak of vGRF of intact limb %BM SP IL N N Y
Foot rotation ◦ — N N N

(c) ASI parameters
Absolute symmetry index of loading response % ASI LR Y Y Y
Absolute symmetry index of single limb support % ASI SLS Y Y Y
Absolute symmetry index of pre-swing % ASI PS Y Y Y
Absolute symmetry index of swing phase % ASI SW Y Y Y
Absolute symmetry index of step length % ASI SPL Y Y Y
Absolute symmetry index of step time % ASI SPT Y Y Y
Absolute symmetry index of first peak % ASI FP Y Y Y
Absolute symmetry index of second peak % ASI SP Y Y Y
Absolute symmetry index of foot rotation % ASI FR Y Y N

Absolute symmetry index of stance phase % ASI STA N N Y

Abbreviations: BMI: body mass index; BM: body mass; ASI: absolute symmetry index; Y: yes; N: no.
Note: The parameters between the double lines in demographic, spatiotemporal, and ASI parameters were used for model training.
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2.4. Statistics

After determining the optimal number of clusters using the Silhou
ette Score and Elbow Method, statistical comparisons were conducted 
among the identified clusters with respect to demographic (Table 2 (a)), 
spatiotemporal (Table 2 (b)), and ASI parameters (Table 2 (c)) to test the 
hypothesis. The Shapiro-Wilk test was used to assess the normality of the 
data. A one-way analysis of variance (ANOVA) was used for normally 
distributed data to find differences among the three clusters, with sub
sequent application of Tukey’s post hoc test to correct for multiple 
comparisons. The independent-samples Kruskal-Wallis’s test was used to 
detect potential differences among the three clusters for the data of non- 
normal distribution. The significance threshold was set at alpha (α) =
0.05, and all the analyses for discrete parameters were conducted using 
SPSS (IBM SPSS Statistics 26, SPSS Inc., Chicago, IL).

3. Results

3.1. Demographic parameters’ difference among clusters

No significant demographic differences were found among clusters 
(Table 3).

3.2. Feature importance and clustering results

The primary objective was to measure feature importance in dis
tinguishing individuals with uTFA from able-bodied controls using a 
random forest model. The model, assessed by cross-validation (Cross- 
validation = 5), achieved 100 % accuracy. Feature importance results 
(Fig. 2c) ranked the parameters as follows: ASI SW (24.4 %), ASI SLS 
(21.4 %), ASI SPT (13.6 %), ASI FP (7.7 %), ASI LR (5.7 %), ASI PS (5.6 
%), SPW (5.4 %), WS (4.6 %), SDT (2.8 %), cadence (2.1 %), TC (2.1 %), 
ASI SP (1.5 %), ASI SPL (1.4 %), SDL (0.6 %), ASI FR (0.6 %), and DLS 
(0.3 %). Clustering analysis identified three optimal clusters based on 
the Silhouette Score and Elbow Method (Figs. 2a, 2b). Fig. 2d shows the 
distribution of the cluster 1 (C1), cluster 2 (C2), and cluster 3 (C3). C1 
included participant 1–4; C2 included participant 5–8; and C3 included 
participant 9–12. MRMR analysis ranked the features as follows: ASI SLS 
(0.579), ASI SW (0.484), ASI SPT (0.462), WS (0.379), ASI LR (0.212), 
ASI SP (0.203), ASI PS (0.195), SPW (0.192), ASI FP (0.174), cadence 
(0.137), ASI SPL (0.122), TC (0.121), SDT (0.110), ASI FR (0.068), DLS 
(− 0.001), and SDL (− 0.002) (Fig. 3).

3.3. Spatiotemporal and ASI parameters’ differences among clusters

The second objective and hypothesis aimed to determine whether 
clustering would reveal distinct gait patterns with significant differences 
in spatiotemporal and symmetry parameters. Significant differences in 
spatiotemporal parameters were found: C3 exhibited significantly lower 
STA IL (s) (p = 0.02, Cohen’s d = 3.49), lower LR PL (s) (p = 0.05, 

Cohen’s d = 2.36), lower PS IL (s) (p = 0.05, Cohen’s d = 2.36), lower 
DLS (s) (p = 0.04, Cohen’s d = 2.55), and higher cadence (p = 0.03, 
Cohen’s d = 4.04) compared to C1; C3 exhibited significantly lower SPL 
IL (p = 0.02, Cohen’s d = 2.56) and lower SDL (p = 0.01, Cohen’s d =
2.84) compared to C2; C3 showed significantly lower SPT PL than both 
C1 (p = 0.02, Cohen’s d = 3.33) and C2 (p = 0.04, Cohen’s d = 2.02); C1 
exhibited significantly higher STA IL (%) (p = 0.03, Cohen’s d = 3.49), 
lower SLS PL (%) (p = 0.03, Cohen’s d = 3.47), and lower SW IL (%) (p 
= 0.03, Cohen’s d = 3.49) compared to C2 (Table 4). Significant dif
ferences in ASI parameters were also observed: C2 exhibited signifi
cantly lower ASI STA (p = 0.01, Cohen’s d = 2.56), lower ASI SLS (p =
0.01, Cohen’s d = 3.41), and lower ASI SW (p < 0.01, Cohen’s d = 3.35) 
compared to C1 while C1 showed significantly higher ASI SPL than both 
C2 (p < 0.01, Cohen’s d = 3.52) and C3 (p = 0.02, Cohen’s d = 2.07) 
(Table 5).

4. Discussion

In this study, the random forest algorithm was first employed to 
determine the importance of different symmetry parameters. Then, the 
k-means clustering algorithm was applied utilizing these parameters to 
identify three distinct clusters among individuals with uTFA.

The full feature set was used to train the clustering model for the 
following reasons: 1) when computational resources permit, using a 
larger set of features can improve model performance. Given the study’s 
modest dataset and manageable computational demands, we opted to 
retain all features, and 2) clustering was also attempted using the top 2, 
4, and 6 most important features identified by the random forest model. 
However, these reduced feature sets resulted in unstable centroids and 
low silhouette scores and thus failed to generate meaningful clusters. 
Given the limited sample size, dimensionality reduction based solely on 
feature importance was not effective in this case.

The first hypothesis was supported as the random forest model suc
cessfully identified the importance of all parameters for classification. 
Notably, cadence and step length, commonly used in previous clustering 
studies (Ichimura et al., 2022; Xu et al., 2006), exhibited low importance 
(cadence = 2.1 %, SPL = 1.4 %). In contrast, the duration time symmetry 
of the swing phase and single limb support emerged as highly influential 
(ASI SW = 24.4 %, ASI SLS = 21.4 %). To ensure that the variables 
highlighted by the random forest model were not artefacts of tree-based 
impurity metrics, we computed MRMR scores for all 16 input features. 
The top two features identified ASI SLS (MRMR score = 0.579) and ASI 
SW (MRMR score = 0.484), aligned with the random forest ranking. This 
convergence of two independent feature selection approaches confirms 
their significance for differentiating gait patterns in individuals with 
uTFA. It is worth mentioning that these two phases are essentially 
identical when considering duration time (Jacquelin Perry, 2010). 
However, the significance of single limb support cannot be overstated as 
individuals with uTFA tend to minimize weight-bearing on their pros
thetic side, leading to shortened single limb support (Schmid et al., 
2005). This temporal asymmetry is a hallmark of prosthetic gait 
symmetry.

It should be noted that the feature importance scores in this study 
were obtained by comparing uTFA gait with able-bodied gait, which 
may highlight ASI variables. However, this emphasis should not be 
viewed as a limitation. On the contrary, the prominent ranking of the 
ASI metrics reinforces the long-sanding clinical observation that bilat
eral asymmetry is a key distinguishing feature of uTFA gait (Agrawal 
et al., 2013; Cutti et al., 2018; Highsmith et al., 2016). This focus on 
asymmetry establishes a meaningful reference point for the overall de
viation between these two populations, an ‘outer layer’ against which 
finer, within-group variations such as cadence or step length can be 
interpreted. Essentially, the ASI variables quantify the extent to which 
an individual departs from typical gait symmetry, whereas the spatio
temporal variables characterize how that departure manifests in terms 
of movement metrics. Although ASI parameters may show limited 

Table 3 
Demographic parameters of three clusters.

Parameters C1 C2 C3 p- 
value

Age (year) 51 ± 5 58 ± 7 52 ± 6 0.35
Time since amputation 

(year)
13.5 ±
11.8

33.0 ±
17.7

8.0 ± 3.5 0.15

Body height (m) 1.78 ±
0.04

1.76 ±
0.04

1.68 ±
0.09

0.21

Body mass (kg) 85.5 ±
11.5

67.3 ± 2.5 70.5 ±
19.5

0.25

BMI (kg/m2) 27.3 ± 4.7 21.8 ± 1.3 24.5 ± 4.5 0.33
Residual limb length (cm) 21.8 ± 4.8 22.5 ± 4.8 21.8 ± 6.0 0.99
Walking speed (km/h) 1.53 ±

0.23
2.09 ±
0.43

1.75 ±
0.22

0.13

Abbreviations: C1: cluster 1; C2: cluster 2; C3: cluster 3; BMI: body mass index.
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variability within the individuals with uTFA, the random forest results 
suggest that they are among the most informative features for dis
tinguishing gait patterns and may represent the most promising targets 
for functional improvement.

The second hypothesis was supported as there were significant dif
ferences in spatiotemporal and symmetry parameters among the three 
distinct clusters of individuals with uTFA. These clusters exhibited 
diverse gait patterns, with C1 displaying the lowest symmetry and the 
shortest duration time of the single limb support on the prosthetic limb, 
C2 demonstrating the highest symmetry and the longest bilateral stride 
length, and C3 featuring the highest cadence. Training focused on 
increasing step length and extending the duration time of the single limb 
support on the prosthetic limb could potentially enhance gait symmetry 
(C1 vs. C2). The extended single limb support allows for a longer stride 
length, and relies on the strength of the hip muscle groups (Wentink 
et al., 2013). For individuals in C1, targeted training to increase step 
length and extend the duration of single limb support on the prosthetic 
limb—such as by strengthening hip abductors and extensors—may help 
improve balance and confidence in weight-bearing (Wakasa et al., 
2010). However, the influence of cadence on gait symmetry remains 
inconclusive when comparing C2 and C3. While C3 exhibited more 
asymmetry compared to C2, the difference did not reach statistical sig
nificance. For individuals in C3, who already have high cadence but 
exhibit asymmetry, interventions aimed at modulating cadence and 
increasing stride length may help enhance stability and improve overall 
gait symmetry by reducing reliance on high cadence alone.

In practice, gait symmetry is influenced by numerous factors, many 
of which may contribute to an increased step length. Achieving a rela
tively longer step length on the intact side often depends on a sufficient 
duration of single limb support on the prosthetic side, which requires 

Fig. 2. K-means cluster results and features importance. (a) is the result of Silhouette Score, (b) shows the elbow method. (c) is the results of feature importance, ASI: 
absolute symmetry index; SW: swing phase; SLS: single limb support; SPT: step time; FP: first peak; LR: loading response; PS: pre-swing; SPW: step width; WS: walking 
speed; SDT: stride time; TC: total contact time; SP: second peak; SPL: step length; SDL: stride length; FR: foot rotation; DLS: double limb support. (d) shows the 
samples distribution after conducting principal component analysis (PCA) of all the features and the results of k-means cluster (k = 3).

Fig. 3. Maximum-relevance-minimum-redundancy (MRMR) ranking of all 16 
input features. Bars show the MRMR score assigned to each feature, ordered 
from highest (bottom) to lowest (top). ASI: absolute symmetry index; SLS: 
single limb support; SW: swing phase; SPT: step time; WS: walking speed; LR: 
loading response; SP: second peak; PS: pre-swing; SPW: step width; FP: first 
peak; SPL: step length; TC: total contact time; SDT: stride time; FR: foot rota
tion; DLS: double limb support; SDL: stride length.
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strong support and stability—conditions associated with well-developed 
hip musculature on the prosthetic side. Strengthening the hip muscles 
benefits all individuals with uTFA (Riley et al., 2007), although the in
tensity of training may vary. For instance, C1 represents the gait pattern 

Table 4 
Mean value, SD value, normality, p-value, and post-hoc analysis of spatiotem
poral and vGRF parameters.

Parameters Clusters p- 
value 
(main 
effect)

Post-hoc

C1 C2 C3 C1- 
C2

C1- 
C3

C2- 
C3

STA PL (s) 1.01 
±

0.07

1.00 
±

0.17

0.77 
±

0.03

0.04* 0.98 0.05 0.07

STA IL (s) 1.23 
±

0.11

1.10 
±

0.17

0.90 
±

0.03

0.02* 0.44 0.02* 0.13

LR PL (s) 0.37 
±

0.04

0.28 
±

0.06

0.25 
±

0.04

0.05 0.15 0.05* 0.75

LR IL (s) 0.28 
±

0.04

0.27 
±

0.05

0.20 
±

0.02

0.07 — — —

SLS PL (s) 0.36 
±

0.03

0.45 
±

0.08

0.32 
±

0.05

0.05 — — —

SLS IL (s) 0.58 
±

0.06

0.56 
±

0.09

0.45 
±

0.04

0.11 — — —

PS PL (s) 0.28 
±

0.04

0.27 
±

0.05

0.20 
±

0.02

0.07 — — —

PS IL (s) 0.37 
±

0.04

0.28 
±

0.06

0.25 
±

0.04

0.05 0.15 0.05* 0.75

SW PL (s) 0.58 
±

0.06

0.56 
±

0.09

0.45 
±

0.04

0.11 — — —

SW IL (s) 0.36 
±

0.03

0.45 
±

0.08

0.32 
±

0.05

0.05 — — —

DLS (s) 0.65 
±

0.06

0.55 
±

0.10

0.45 
±

0.06

0.04* 0.36 0.04* 0.32

STA PL (%) 63.7 
± 1.8

64.1 
± 2.6

63.3 
± 2.8

0.92 — — —

STA IL (%) 77.3 
± 1.7

71.3 
± 1.3

74.0 
± 3.6

0.04* 0.03* 0.26 0.39

LR PL (%) 23.4 
± 0.6

18.1 
± 1.7

20.9 
± 4.1

0.09 — — —

LR IL (%) 17.6 
± 2.3

17.3 
± 2.8

16.4 
± 2.3

0.82 — — —

SLS PL (%) 22.7 
± 1.7

28.7 
± 1.3

26.0 
± 3.5

0.04* 0.03* 0.25 0.38

SLS IL (%) 36.3 
± 1.8

35.9 
± 2.6

36.7 
± 2.8

0.92 — — —

PS PL (%) 17.6 
± 2.3

17.3 
± 2.8

16.4 
± 2.3

0.82 — — —

PS IL (%) 23.4 
± 0.6

18.1 
± 1.7

20.9 
± 4.1

0.09 — — —

SW PL (%) 36.3 
± 1.9

35.9 
± 2.6

36.7 
± 2.9

0.92 — — —

SW IL (%) 22.7 
± 1.7

28.8 
± 1.3

26.0 
± 3.6

0.04* 0.03* 0.25 0.38

DLS (%) 41.0 
± 2.8

35.3 
± 3.8

37.3 
± 6.2

0.34 — — —

SPT PL (s) 0.85 
±

0.08

0.82 
±

0.11

0.65 
±

0.02

0.02* 0.84 0.02* 0.04*

SPT IL (s) 0.73 
±

0.06

0.73 
±

0.14

0.57 
±

0.02

0.09 — — —

SDT (s) 1.58 
±

0.13

1.55 
±

0.25

1.22 
±

0.04

0.04* 0.97 0.05 0.08

Cadence 
(steps/ 
min)

76 ±
6

80 ±
14

99 ±
3

0.03* 0.89 0.03* 0.06

SPL PL (cm) 29.8 
± 8.5

44.9 
± 3.6

28.9 
± 6.4

0.06 — — —

Table 4 (continued )

Parameters Clusters p- 
value 
(main 
effect) 

Post-hoc

C1 C2 C3 C1- 
C2 

C1- 
C3 

C2- 
C3

SPL IL (cm) 37.0 
± 4.7

42.6 
± 4.6

30.6 
± 3.5

0.02* 0.30 0.21 0.02*

SDL (cm) 66.9 
±

10.3

87.6 
± 8.0

59.5 
± 9.2

0.01* 0.05 0.60 0.01*

SPW (cm) 21.3 
± 4.8

14.7 
± 0.5

21.8 
± 5.1

0.12 — — —

FP PL (%BM) 88.4 
±

20.5

71.9 
± 9.9

69.0 
±

14.1

0.30 — — —

FP IL (%BM) 61.5 
± 5.5

62.4 
± 6.5

69.0 
±

13.8

0.58 — — —

SP PL (%BM) 74.4 
±

12.4

76.4 
±

13.6

87.7 
±

13.0

0.44 — — —

SP IL (%BM) 74.5 
±

14.1

82.0 
±

13.1

87.2 
± 8.7

0.47 — — —

Abbreviations: C1: cluster 1; C2: cluster 2; C3: cluster 3; PL: prosthetic limb; IL: 
intact limb; C1-C2: post-hoc between cluster 1 and cluster 2; C1-C3: post-hoc 
between cluster 1 and cluster 3; C2-C3: post-hoc between cluster 2 and cluster 3; 
STA: stance; LR: loading response; SLS: single limb support; PS: pre-swing; SW: 
swing phase; DLS: double limb support; SPT: step time; SDT: stride time; SPL: 
step length; SDL: stride length; SPW: step width; FP: first peak; SP: second peak; 
BM: body mass. An asterisk (*) indicates a significant difference with p < 0.05.

Table 5 
Mean value, SD value, normality, p-value, and post-hoc analysis of absolute 
symmetry index parameters.

Parameters 
(%)

Clusters p-value 
(main 
effect)

Post-hoc

C1 C2 C3 C1-C2 C1- 
C3

C2- 
C3

ASI STA 19.4 
± 3.1

10.7 
± 2.8

15.7 
± 2.2

0.01* 0.01* 0.27 0.12

ASI LR 28.6 
±

11.5

12.9 
±

11.7

23.2 
± 8.8

0.25 — — —

ASI SLS 46.4 
± 7.5

21.9 
± 4.5

34.8 
± 7.7

0.01* <0.01* 0.19 0.13

ASI PS 28.6 
±

11.5

12.9 
±

11.7

23.2 
± 8.8

0.25 — — —

ASI SW 46.3 
± 7.7

21.9 
± 4.6

34.8 
± 7.7

0.01* <0.01* 0.15 0.10

ASI SPL 34.2 
± 8.8

6.6 
± 3.8

14.5 
± 7.7

<0.01* <0.01* 0.02* 0.40

ASI SPT 15.8 
± 4.8

12.7 
± 6.8

12.5 
± 2.4

0.67 — — —

ASI FP 33.3 
±

22.8

23.8 
±

12.2

22.1 
±

15.1

0.70 — — —

ASI SP 10.3 
± 6.3

7.5 
± 5.6

11.3 
± 3.2

0.65 — — —

Abbreviations: C1: cluster 1; C2: cluster 2; C3: cluster 3; PL: prosthetic limb; IL: 
intact limb; C1-C2: post-hoc between cluster 1 and cluster 2; C1-C3: post-hoc 
between cluster 1 and cluster 3; C2-C3: post-hoc between cluster 2 and cluster 3; 
ASI: absolute symmetry index; STA: stance; LR: loading response; SLS: single 
limb support; PS: pre-swing; SW: swing phase; SPL: step length; SPT: step time; 
FP: first peak; SP: second peak. An asterisk (*) indicates a significant difference 
with p < 0.05.
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most in need of hip muscle strengthening, while C3, where symmetry is 
relatively better, may benefit more from cadence adjustment.

Although changes in double limb support phase in the gait of in
dividuals with uTFA have been widely recognized in rehabilitation 
settings (He et al., 2024), our study is the first to show that asymmetry 
and spatiotemporal measures can be used to classify individuals with 
uTFA into three reproducible clusters, each showing a distinct gait 
pattern. The inherent complexity of uTFA gait makes traditional clas
sification approaches insufficient (Harandi et al., 2020; Heitzmann 
et al., 2020). Our findings offer a clinically meaningful framework for 
establishing a more consistent gait taxonomy that can support person
alized rehabilitation strategies. From a broader clinical perspective, 
these insights are valuable. For example, in individuals assigned to C1 or 
C3, therapists could prioritize addressing major asymmetries such as 
unequal single limb support phase or swing phase duration before fine- 
tuning cadence or other secondary gait mechanics. Furthermore, the 
identified clusters can inform clinical decisions regarding prosthetic 
alignment and component selection. For instance, individuals exhibiting 
reduced single limb support duration might benefit from enhanced knee 
stability settings, while those with high cadence and short step length 
could improve their gait by increasing the initial flexion angle of the 
socket to enhance hip extension during terminal stance or by incorpo
rating dynamic response foot components.

Our findings both confirm and extends the results of a previous 
clustering study (Ichimura et al., 2022). Similar to their hierarchical 
approach, our methods identified three distinct gait clusters among in
dividuals with uTFA, reinforcing the notion that uTFA gaits is not a 
single, homogeneous pattern. However, the studies differ in the vari
ables driving cluster formation and consequently in their clinical im
plications. In the previous study (Ichimura et al., 2022), clustering was 
based on cadence and step length data collected across eight fixed 
treadmill speeds, with cluster structure influenced primarily by partic
ipant body size and prosthetic knee components. In contrast, our study 
used sixteen features derived from symmetry indices and vGRF data 
collected at each participant’s self-selected speed. Taken together, these 
two studies offer complementary insights: step length and cadence 
patterns capture how individuals with uTFA adapt across a range of 
walking speeds, whereas symmetry-based features show how much their 
gait deviates from bilateral norms at their preferred speed. Clinically, 
the cadence/step length-based clusters suggest tailoring interventions to 
anthropometric factors and prosthetic technology, whereas our 
symmetry-based clusters support a progressive rehabilitation pathway, 
first targeting fundamental gait asymmetries (especially the single limb 
support and swing phases), and then fine-tuning cadence and stride 
parameters to optimize functional performance.

The study has several limitations. First, the analysis of feature 
importance focused mainly on symmetry parameters derived from 
spatiotemporal and vGRF data. Future research should include a broader 
range of gait parameters, such as joint angles and moments, for a more 
comprehensive assessment. Second, all available features were 
employed in the clustering process without prioritization. The limited 
number of features could have led to an incomplete characterization of 
gait patterns. Further investigations should explore features selection 
strategies that consider varying levels of importance. Third, treadmill- 
based assessments may not fully capture overground gait characteris
tics, where environmental factors and natural walking patterns differ 
(Riley et al., 2007). Finally, the sample size was modest. Although 
previous clustering studies on individuals with uTFA typically enrolled 
10–20 participants (Jamieson et al., 2023; Liu et al., 2022), larger co
horts would enable more robust cluster structures and finer distinctions 
among gait types. In this study, each cluster contained only four par
ticipants, so between-cluster comparisons should be considered 
exploratory and interpreted with caution. Furthermore, variability in 
prosthetic knee and foot components across participants may have 
amplified the limitations of the small sample size and potentially affect 
the clustering outcomes. Future research should aim to reduce 

component variability to enhance the reliability and generalizability of 
clustering outcomes.

In conclusion, this study highlights the importance of swing phase 
and single limb support duration symmetries as key features for dis
tinguishing individuals with uTFA from non-disabled, as determined by 
the random forest algorithm. Subsequently, k-means clustering algo
rithm identified three distinct gait patterns among individuals with 
uTFA. These patterns are categorized as follows: C1, characterized by 
the lowest symmetry and shortest single limb support duration, could 
indicate a clinical need for interventions focusing on balance and weight 
acceptance; C2, exhibiting high symmetry and extended stance dura
tion, aligns with stable gait patterns typically targeted for endurance and 
strength training; C3, with moderate symmetry but high cadence, sug
gests a focus on cadence modulation and gait stability. Customized 
rehabilitation training tailored to specific gait deviation patterns may 
better support individuals with uTFA in improving their gait 
performance.
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