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ARTICLE INFO ABSTRACT

Keywords: Cluster analysis has been recently applied to categorize gait patterns in individuals with unilateral transfemoral
An}P“tee amputation (uTFA). However, conventional clustering methods largely rely on experiential knowledge of gait
Galltkpattem analysis, lacking a scientific foundation for feature selection. The aim of this study was to investigate if gait
?;:nmetry patterns could be classified using random forest and k-means clustering in individuals with uTFA. Spatiotemporal

data and vertical ground reaction force (vGRF) were collected using an instrumented treadmill from twelve
individuals with uTFA and twelve age-matched non-disabled individuals participated. Absolute symmetry index
(ASI) was obtained and normalized. These parameters served as inputs for a random forest model to assess their
importance. K-means clustering was applied to determine the optimal number of clusters according to Silhouette
Score and the Elbow Method. Differences in demographic, spatiotemporal, and ASI parameters among clusters
were assessed using One-way ANOVA and independent-sample Kruskal-Wallis tests. Random forest model
revealed that swing phase and single limb support duration time symmetries were most significant for dis-
tinguishing individuals with uTFA from non-disabled. The k-means identified three distinct clusters: cluster 1
exhibited the lowest symmetry with the shortest prosthetic single limb support duration; cluster 2 displayed the
highest symmetry with the longest prosthetic single limb support duration and intact step length; cluster 3
demonstrated moderate symmetry with the highest cadence. This study highlights that customized rehabilitation
targeting specific gait patterns—such as strengthening muscles to increase single-limb support and step length,
and modulating cadence—could enhance gait performance in individuals with uTFA.

Machine learning

1. Introduction

Individuals with unilateral transfemoral amputation (uTFA) exhibit
asymmetric gait pattern during walking due to partial loss of the lower
limb and muscles on the amputated side (Winiarski et al., 2021). This
gait asymmetry is related to multiple factors such as walking speed
(Nolan et al., 2003), type of prosthetic components (Kaufman et al.,
2012; Petersen et al., 2010; Schaarschmidt et al., 2012), level of
amputation (Keklicek et al., 2019), muscle strength (Heitzmann et al.,
2020; Krajbich et al., 2023; Rutkowska-Kucharska et al., 2018),
compensatory patterns (Harandi et al., 2020), amputation surgery (Ranz
et al., 2017), and person-dependent gait deviations. Additionally, re-
sidual femur length (Bell et al., 2013), cardiorespiratory fitness (Gjovaag

et al., 2014), prosthetic socket type (Traballesi et al., 2011), prosthetic
alignment (Kobayashi et al., 2013; Zhang et al., 2019), and the in-
dividual’s walking habits also affect the spatiotemporal parameters of
gait. Classifying gait deviations is essential for identifying compensatory
patterns and tailoring rehabilitation programs aimed at improving gait
symmetry and function. It also enables objective tracking of patients’
progress and aids in optimizing prosthetic interventions. However, due
to the multifaceted nature of these factors, it is challenging to holisti-
cally classify gait in individuals with uTFA.

Limited studies have been conducted to categorize gait in individuals
with uTFA (Ichimura et al., 2022). One study successfully identified
three distinct gait clusters among individuals with uTFA using an un-
supervised machine learning approach—clustering—with each cluster
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showing significant differences in cadence and step length across
various walking speeds (Ichimura et al., 2022). Utilizing an unsuper-
vised machine learning approach is advantageous because it bypasses
the need to consider all factors affecting gait, relying instead on direct
data-driven pattern recognition to classify gait patterns. This approach
has been successfully applied to identify distinct gait patterns in other
patient populations, such as those with stroke or cerebral palsy,
providing a means of tracking and evaluation of gait variations over time
(Abbasi et al., 2021; Chantraine et al., 2022; Roche et al., 2014). Con-
ventional classifiers that incorporate both kinematic and electromyo-
graphic (EMG) data can distinguish gait phases with high accuracy
(Mobarak et al., 2024; Tigrini et al., 2024), offering valuable insights for
gait phases recognition in smart prostheses. Integrating such classifiers
with gait data for individuals with uTFA could further improve loco-
motion and accelerate the development of intelligent prosthetic tech-
nologies. However, studies specifically focused on gait pattern
classification in individuals with uTFA remain limited. By applying
clustering techniques to gait data from this population, our study aims to
objectively classify distinct gait types and ultimately inform personal-
ized interventions that address specific gait deviations and rehabilita-
tion needs.

However, using only a clustering algorithm has its limitation, as it
does not reveal which specific gait features contribute most to gait
classification. Typically, researchers select key features for model
training based on their expertise in gait analysis. While expert input is
valuable, relying solely on subjective judgement can reduce objectivity
and reproducibility in feature selection, potentially limiting the gener-
alizability of the findings. The random forest model can be utilized to
calculate feature importance, aiding in identification of the most critical
characteristics that distinguish between groups (Luo et al., 2020). By
training the model on gait data from both able-bodied individuals and
those with uTFA, it can assess which features most effectively differen-
tiate these groups. Features that significantly contribute to the model’s
classification accuracy are ranked higher, indicating their importance in
capturing the unique aspects of each group’s gait pattern.

Symmetry parameters are metrics used to quantify the degree of
bilateral symmetry, typically calculated from measured bilateral kine-
matic or kinetic gait parameters (Viteckova et al., 2018). Different for-
mulas can yield various values, generally represented as percentages
within a range, such as 0 to 1, where 0 indicates perfect symmetry and 1
indicates complete asymmetry. For individuals with uTFA, bilateral
asymmetry is common (Schaarschmidt et al., 2012), and symmetry pa-
rameters could serve as valuable indicators for assessing gait quality and
monitoring improvement over time.

In this study, the first objective is to assess the importance of the
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features (include kinematic parameters, spatiotemporal parameters, and
symmetry parameters derived from the spatiotemporal parameters) that
distinguish the gait of individuals with uTFA from that of non-disabled
using a random forest model. These features are then used to cluster
individuals with uTFA. The second objective is to identify the gait pat-
terns of different clusters. Our hypothesis is that the clustering algorithm
can identify multiple distinct gait patterns with significant differences in
spatiotemporal and symmetry parameters.

2. Methods
2.1. Participants

Twelve uTFA individuals (ten male and two female individuals; age:
54 + 7 years; time since amputation: 18.2 + 16.5 years; body height:
1.74 + 0.07 m; body mass: 74.4 + 15.4 kg; BMIL: 24.5 + 4.5 kg/m2;
residual limb length: 22.1 + 5.2 c¢m; walking speed: 1.78 + 0.38 km/h)
participated in this study (Table 1). The inclusion criteria were: 1) at
least 18 years old, 2) uTFA, 3) ability to walk on a treadmill without
using assistive devices (e.g., crutch, walker), and 4) no neuro-
musculoskeletal complications other than amputation. An age-matched
control group of twelve able-bodied individuals (nine male and three
female individuals; age: 54 + 7 years; body height: 1.66 + 0.09 m; body
mass: 66.8 + 10.4 kg; BML: 24.2 + 2.1 kg/m2; walking speed: 2.33 +
0.20 km/h) was also recruited. This study was approved by the Human
Subjects Ethics Sub-Committee of the Hong Kong Polytechnic University
(number: HSEARS20220719001). All participants were informed of the
contents of the study, and consent was obtained before participation.

2.2. Protocol

The experimental setting is shown in Fig. 1. A Zebris FDM-T tread-
mill (Zebris Medical GmbH, Germany) was used to collect spatiotem-
poral gait parameters, including walking speed, cadence, step length,
stride length, step width, step time, duration time of gait phases (stance
phase, loading response, single limb support, double limb support, pre-
swing phase, and swing phase), as well as vGRFs for both the left and
right limbs. The test-retest reliability and validity of Zebris had been
well established in previous studies conducted with healthy participants
(Reed et al., 2013; Van Alsenoy et al., 2019). All individuals were asked
to warm up on the treadmill for a minimum of 5 min (Zeni Jr and
Higginson, 2010). They were encouraged to walk without aids, but the
handrails were available for support if needed. All individuals walked on
the treadmill for two trials, each lasting for one minute at a self-selected
speed, which was determined by gradually increasing the treadmill

Table 1
Demographic information of individuals with unilateral transfemoral amputation.
Participants Gender  Amputation Type of K- Reason for Age Time since Body Body BMI  Residual Walking
side PK level amputation (year) amputation height mass limb length  speed
(year) (m) (kg) (cm) (km/h)
1 M L Mauch 4 Infection 52 6 1.76 78 25.2 20 1.79
2 M L Paso 3 Trauma 43 7 1.74 100 33.0 24.5 1.40
3 F L 3R106 3 Trauma 56 7 1.75 93 304 15 1.71
PRO
4 M L 3R80 4 Cancer 54 34 1.85 71 20.8 27.8 1.21
5 M L RHEO 4 Trauma 66 53 1.79 71 222 174 2.82
6 M R TSA 4 Trauma 62 45 1.78 65 205 23 2.01
7 M L Paso 3 Cancer 57 7 1.77 65 20.8 19.5 1.81
8 M L Covered 4 Trauma 48 27 1.69 68 23.8 30 1.73
9 F R KX06 4 Trauma 55 5 1.56 53 21.8 23 1.70
10 M R Paso 4 Trauma 49 11 1.76 74 23.9 15 211
11 M L Jiguang 4 Trauma 44 4 1.78 101 319 31 1.50
12 M L 3R78 4 Infection 61 12 1.63 54 20.3 185 1.71

Abbreviations: PK: prosthetic knee; BMI: body mass index; CT: control; M: male; F: female; R: right; L: left; TSA: traditional single axis. Prosthetic knee: Mauch knee,
Paso knee, and RHEO knee are from Ossur, Iceland; 3R106 PRO, 3R80, and 3R78 are from Ottobock, Germany; KX06 is from Endolite, India; Jiguang knee is from

Zeanso, China.
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Fig. 1. Illustration of the experimental setting. Participants walked on a
treadmill at their self-selected walking speed, secured by safety belt.

speed until participants confirmed that it felt comfortable and sustain-
able. They all wore their own shoes during walking to ensure that the
alignment of their prostheses remained unchanged. The gait analysis
FDM-T module (an operation mode of the Zebris FDM-T treadmill) was
used to collect data. Adequate rest was given between the trials to
minimize the effects of fatigue. All individuals wore a safety harness
during walking, which was set to an appropriate tension to ensure it
would not interfere with the walking (Fig. 1).

2.3. Data analyses

2.3.1. Spatiotemporal and vGRF parameters

All data were processed utilizing the Zebris FDM software (Zebris
Medical GmbH, Germany). vGRF was recorded via pressure sensors
embedded underneath the treadmill belt at a sampling rate of 300 Hz
and used to identify specific gait phases. Both the duration time (in
seconds) and percentage of the gait cycle were obtained for both sides.
The first and second peaks of the vGRF were detected using a custom
Python script, defined as the maximum values within the first 50 % and
last 50 % of the gait cycle, respectively. The processed vGRF output for
the control, intact, and prosthetic limbs are presented in Supplementary
Fig. 1, with each curve representing one participant. Additional
spatiotemporal parameters including step length, stride length, step
time of each side, stride time, cadence, step width, foot rotation, and
total contact time were also collected by the treadmill. All parameters
were defined and automatically calculated by the treadmill’s built-in
software. The average values of all parameters across the two trials
were calculated for inclusion in subsequent parameter calculations or
statistical analyses.

2.3.2. Absolute symmetry index (ASD

Absolute symmetry indices were computed for defined gait param-
eters, including the first and second vGRF peaks, foot rotation, step
length, step time and the percentage duration of each gait cycle. The ASI
was calculated using equation (1) (Finco et al., 2023), where IL repre-
sents the parameters of the intact limb, PL represents the parameters of
the prosthetic limb. Values of ASI closer to 0 % represent a higher level
of symmetry, and further away from 0 % indicate a lower level of
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symmetry. All the features were then normalized within 0-1 by using the
min-max normalization (equation (2), where i indicated each sample
(Patro and Sahu, 2015).

IL — PL
— | "™ %1009
ASI 0.5%(IL + PL) 100% (@D)]
ASI = ASI; — min (ASI) )

max (ASI) —min (ASI)

2.3.3. Model training for random forest

The feature matrix for 12 uTFA individuals and 12 non-disabled in-
dividuals was obtained (Table 2), and the dataset was split into training
and test sets (10 uTFA individuals and 10 non-disabled individuals for
training, and 2 uTFA individuals and 2 non-disabled individuals for
testing). A random state was set to 62 to ensure consistent results across
repeated runs and facilitate reproducibility. Subsequently, the random
forest model training was conducted, constructing a total of 1000 esti-
mators with a fixed random state of 62 to identify the importance of
features that can differentiate individuals with uTFA from non-disabled.

Feature importance was then computed by the random forest model.
The Gini Impurity was calculated using equation (3), where m indicates
the number of samples and p; the probability of sample i. The Total
Impurity Decrease was calculated using equations (4), (5), and (6),
where k represents the total number of child nodes in decision tree,
Nehig, denotes the number of samples in the i th child node, Nygrene Stands
for the number of samples in the parent node, and T represents the total
number of trees in the random forest model. For each feature j, its
importance was determined as the cumulative impurity decrease
divided by the sum of cumulative impurity decrease for all features
(equation (7), with N representing the total number of features. The
random forest model training was carried out using an open-source
scikit-learn code (Version 1.3.2, available at https://scikit-learn.org/)
in Python (Version 3.11).

Gini Impurity =1 — Zi";piz (3)

Weighted avg = 3"+ | (T x Gini(child) @
=1 Nparent

Impurity Decrease = Gini(parent) — Weighted avg 5)

Total Impurity Decrease; = Z;Zmdmﬂ[nmun'ty Decrease; 6)

Importance; = Total Impurity Decrease; ”

Sy, Total Impurity Decreasey

To confirm the feature importance obtained from the random forest
model, Maximum Relative Minimum Redundancy (MRMR) analysis was
conducted. Each feature received an MRMR score, calculated using
equation (8), where C represents the binary class label (0 = non-disabled
individual, 1 = individual with uTFA), I(X;Y) denotes the mutual in-
formation between two random variables, the second term captures the
average redundancy of f with respect to all other features s, and a € [0, 1]
is defined weight that balances relevance and redundancy.

MRMRscore = al(f; C) — (1 — a) ‘F‘%lzsghﬁl()‘; s) (8)

2.3.4. Model training for k-means clustering

The feature matrix of 12 uTFA individuals was employed for k-means
clustering (Table 2). The optimal number of clusters was determined
using the following two evaluation methods: 1) the Silhouette Score,
which measures cohesion within clusters and separation between clus-
ters. The optimal number of clusters corresponds to the global maximum
of this score, where cohesion is highest and clusters are most distinct;


https://scikit-learn.org/
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Table 2
Parameter summary for feature selection and statistical testing.

Parameters Units Abbreviations Random forest features K-means features Statistical test

(a) Demographic parameters

Walking speed km/h WS Y Y Y
Age year — N N Y
Time since amputation year — N N Y
Body height m — N N Y
Body mass kg — N N Y
BMI kg/m? — N N Y
Residual limb length cm — N N Y
(b) Spatiotemporal parameters

Double limb support duration time % DLS Y Y Y
Stride time s SDT Y Y Y
Cadence steps/min — Y Y Y
Stride length cm SDL Y Y Y
Step width cm SPW Y Y Y
Total contact time s TC Y Y N

Stance phase duration time of prosthetic limb s STA PL N N Y
Stance phase duration time of intact limb s STA IL N N Y
Loading response duration time of prosthetic limb s LR PL N N Y
Loading response duration time of intact limb s LR IL N N Y
Single limb support duration time of prosthetic limb s SLS PL N N Y
Single limb support duration time of intact limb s SLS IL N N Y
Pre-swing duration time of prosthetic limb s PS PL N N Y
Pre-swing duration time of intact limb s PSIL N N Y
Swing phase duration time of prosthetic limb s SW PL N N Y
Swing phase duration time of intact limb s SW IL N N Y
Double limb support duration time s DLS N N Y
Stance phase duration time of prosthetic limb % STA PL N N Y
Stance phase duration time of intact limb % STA IL N N Y
Loading response duration time of prosthetic limb % LR PL N N Y
Loading response duration time of intact limb % LRIL N N Y
Single limb support duration time of prosthetic limb % SLS PL N N Y
Single limb support duration time of intact limb % SLS IL N N Y
Pre-swing duration time of prosthetic limb % PS PL N N Y
Pre-swing duration time of intact limb % PSIL N N Y
Swing phase duration time of prosthetic limb % SW PL N N Y
Swing phase duration time of intact limb % SWIL N N Y
Step time of prosthetic limb s SPT PL N N Y
Step time of intact limb s SPT IL N N Y
Step length of prosthetic limb cm SPL PL N N Y
Step length of intact limb cm SPL IL N N Y
First peak of vGRF of prosthetic limb %BM FP PL N N Y
First peak of VGRF of intact limb %BM FPIL N N Y
Second peak of VGRF of prosthetic limb %BM SP PL N N Y
Second peak of VGRF of intact limb %BM SP IL N N Y
Foot rotation ° — N N N

(c) ASI parameters

Absolute symmetry index of loading response % ASI LR Y Y Y
Absolute symmetry index of single limb support % ASI SLS Y Y Y
Absolute symmetry index of pre-swing % ASI PS Y Y Y
Absolute symmetry index of swing phase % ASI SW Y Y Y
Absolute symmetry index of step length % ASI SPL Y Y Y
Absolute symmetry index of step time % ASI SPT Y Y Y
Absolute symmetry index of first peak % ASI FP Y Y Y
Absolute symmetry index of second peak % ASI SP Y Y Y
Absolute symmetry index of foot rotation % ASI FR Y Y N
Absolute symmetry index of stance phase % ASI STA N N Y

Abbreviations: BMI: body mass index; BM: body mass; ASI: absolute symmetry index; Y: yes; N: no.
Note: The parameters between the double lines in demographic, spatiotemporal, and ASI parameters were used for model training.

and 2) the Elbow Method, which identifies the optimal number of projecting the high-dimensional feature space onto two principal com-
clusters by finding the ‘elbow’ point where adding additional clusters no ponents for a clear display of the k-means clustering results. It was not
longer significantly reduces variation (Shahapure and Nicholas, 2020; used as input for the clustering algorithm or included in any subsequent
Thorndike, 1953). To visualize the distribution of samples in two- statistical analyses. The overall data processing flowchart is illustrated
dimensional space, dimensionality reduction using principal compo- in Supplementary Fig. 2.

nents analysis (PCA) was performed to capture the main variance in the
dataset (Jolliffe, 2002). PCA was used exclusively for visualization,
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2.4. Statistics

After determining the optimal number of clusters using the Silhou-
ette Score and Elbow Method, statistical comparisons were conducted
among the identified clusters with respect to demographic (Table 2 (a)),
spatiotemporal (Table 2 (b)), and ASI parameters (Table 2 (c)) to test the
hypothesis. The Shapiro-Wilk test was used to assess the normality of the
data. A one-way analysis of variance (ANOVA) was used for normally
distributed data to find differences among the three clusters, with sub-
sequent application of Tukey’s post hoc test to correct for multiple
comparisons. The independent-samples Kruskal-Wallis’s test was used to
detect potential differences among the three clusters for the data of non-
normal distribution. The significance threshold was set at alpha (a) =
0.05, and all the analyses for discrete parameters were conducted using
SPSS (IBM SPSS Statistics 26, SPSS Inc., Chicago, IL).

3. Results
3.1. Demographic parameters’ difference among clusters

No significant demographic differences were found among clusters
(Table 3).

3.2. Feature importance and clustering results

The primary objective was to measure feature importance in dis-
tinguishing individuals with uTFA from able-bodied controls using a
random forest model. The model, assessed by cross-validation (Cross-
validation = 5), achieved 100 % accuracy. Feature importance results
(Fig. 2¢) ranked the parameters as follows: ASI SW (24.4 %), ASI SLS
(21.4 %), ASI SPT (13.6 %), ASI FP (7.7 %), ASI LR (5.7 %), ASI PS (5.6
%), SPW (5.4 %), WS (4.6 %), SDT (2.8 %), cadence (2.1 %), TC (2.1 %),
ASI SP (1.5 %), ASI SPL (1.4 %), SDL (0.6 %), ASI FR (0.6 %), and DLS
(0.3 %). Clustering analysis identified three optimal clusters based on
the Silhouette Score and Elbow Method (Figs. 2a, 2b). Fig. 2d shows the
distribution of the cluster 1 (C1), cluster 2 (C2), and cluster 3 (C3). C1
included participant 1-4; C2 included participant 5-8; and C3 included
participant 9-12. MRMR analysis ranked the features as follows: ASI SLS
(0.579), ASI SW (0.484), ASI SPT (0.462), WS (0.379), ASI LR (0.212),
ASI SP (0.203), ASI PS (0.195), SPW (0.192), ASI FP (0.174), cadence
(0.137), ASI SPL (0.122), TC (0.121), SDT (0.110), ASI FR (0.068), DLS
(—0.001), and SDL (—0.002) (Fig. 3).

3.3. Spatiotemporal and ASI parameters’ differences among clusters

The second objective and hypothesis aimed to determine whether
clustering would reveal distinct gait patterns with significant differences
in spatiotemporal and symmetry parameters. Significant differences in
spatiotemporal parameters were found: C3 exhibited significantly lower
STA IL (s) (p = 0.02, Cohen’s d = 3.49), lower LR PL (s) (p = 0.05,

Table 3
Demographic parameters of three clusters.
Parameters C1 c2 C3 p-
value
Age (year) 51+5 58 +7 52+6 0.35
Time since amputation 13.5 + 33.0 + 8.0 £3.5 0.15
(year) 11.8 17.7
Body height (m) 1.78 £ 1.76 £ 1.68 + 0.21
0.04 0.04 0.09
Body mass (kg) 85.5 + 67.3 +£2.5 70.5 + 0.25
11.5 19.5
BMI (kg/m?) 27.3+4.7 21.8+1.3 245+ 4.5 0.33
Residual limb length (cm) 21.8 +4.8 22.5 + 4.8 21.8 £ 6.0 0.99
Walking speed (km/h) 1.53 + 2.09 + 1.75 £ 0.13
0.23 0.43 0.22

Abbreviations: C1: cluster 1; C2: cluster 2; C3: cluster 3; BMI: body mass index.
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Cohen’s d = 2.36), lower PS IL (s) (p = 0.05, Cohen’s d = 2.36), lower
DLS (s) (p = 0.04, Cohen’s d = 2.55), and higher cadence (p = 0.03,
Cohen’s d = 4.04) compared to C1; C3 exhibited significantly lower SPL
IL (p = 0.02, Cohen’s d = 2.56) and lower SDL (p = 0.01, Cohen’s d =
2.84) compared to C2; C3 showed significantly lower SPT PL than both
C1 (p =0.02, Cohen’s d = 3.33) and C2 (p = 0.04, Cohen’s d = 2.02); C1
exhibited significantly higher STA IL (%) (p = 0.03, Cohen’s d = 3.49),
lower SLS PL (%) (p = 0.03, Cohen’s d = 3.47), and lower SW IL (%) (p
= 0.03, Cohen’s d = 3.49) compared to C2 (Table 4). Significant dif-
ferences in ASI parameters were also observed: C2 exhibited signifi-
cantly lower ASI STA (p = 0.01, Cohen’s d = 2.56), lower ASI SLS (p =
0.01, Cohen’s d = 3.41), and lower ASI SW (p < 0.01, Cohen’s d = 3.35)
compared to C1 while C1 showed significantly higher ASI SPL than both
C2 (p < 0.01, Cohen’s d = 3.52) and C3 (p = 0.02, Cohen’s d = 2.07)
(Table 5).

4. Discussion

In this study, the random forest algorithm was first employed to
determine the importance of different symmetry parameters. Then, the
k-means clustering algorithm was applied utilizing these parameters to
identify three distinct clusters among individuals with uTFA.

The full feature set was used to train the clustering model for the
following reasons: 1) when computational resources permit, using a
larger set of features can improve model performance. Given the study’s
modest dataset and manageable computational demands, we opted to
retain all features, and 2) clustering was also attempted using the top 2,
4, and 6 most important features identified by the random forest model.
However, these reduced feature sets resulted in unstable centroids and
low silhouette scores and thus failed to generate meaningful clusters.
Given the limited sample size, dimensionality reduction based solely on
feature importance was not effective in this case.

The first hypothesis was supported as the random forest model suc-
cessfully identified the importance of all parameters for classification.
Notably, cadence and step length, commonly used in previous clustering
studies (Ichimura et al., 2022; Xu et al., 2006), exhibited low importance
(cadence = 2.1 %, SPL = 1.4 %). In contrast, the duration time symmetry
of the swing phase and single limb support emerged as highly influential
(ASI SW = 24.4 %, ASI SLS = 21.4 %). To ensure that the variables
highlighted by the random forest model were not artefacts of tree-based
impurity metrics, we computed MRMR scores for all 16 input features.
The top two features identified ASI SLS (MRMR score = 0.579) and ASI
SW (MRMR score = 0.484), aligned with the random forest ranking. This
convergence of two independent feature selection approaches confirms
their significance for differentiating gait patterns in individuals with
uTFA. It is worth mentioning that these two phases are essentially
identical when considering duration time (Jacquelin Perry, 2010).
However, the significance of single limb support cannot be overstated as
individuals with uTFA tend to minimize weight-bearing on their pros-
thetic side, leading to shortened single limb support (Schmid et al.,
2005). This temporal asymmetry is a hallmark of prosthetic gait
symmetry.

It should be noted that the feature importance scores in this study
were obtained by comparing uTFA gait with able-bodied gait, which
may highlight ASI variables. However, this emphasis should not be
viewed as a limitation. On the contrary, the prominent ranking of the
ASI metrics reinforces the long-sanding clinical observation that bilat-
eral asymmetry is a key distinguishing feature of uTFA gait (Agrawal
et al., 2013; Cutti et al., 2018; Highsmith et al., 2016). This focus on
asymmetry establishes a meaningful reference point for the overall de-
viation between these two populations, an ‘outer layer’ against which
finer, within-group variations such as cadence or step length can be
interpreted. Essentially, the ASI variables quantify the extent to which
an individual departs from typical gait symmetry, whereas the spatio-
temporal variables characterize how that departure manifests in terms
of movement metrics. Although ASI parameters may show limited
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Fig. 2. K-means cluster results and features importance. (a) is the result of Silhouette Score, (b) shows the elbow method. (c) is the results of feature importance, ASI:
absolute symmetry index; SW: swing phase; SLS: single limb support; SPT: step time; FP: first peak; LR: loading response; PS: pre-swing; SPW: step width; WS: walking
speed; SDT: stride time; TC: total contact time; SP: second peak; SPL: step length; SDL: stride length; FR: foot rotation; DLS: double limb support. (d) shows the
samples distribution after conducting principal component analysis (PCA) of all the features and the results of k-means cluster (k = 3).
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Fig. 3. Maximum-relevance-minimum-redundancy (MRMR) ranking of all 16
input features. Bars show the MRMR score assigned to each feature, ordered
from highest (bottom) to lowest (top). ASI: absolute symmetry index; SLS:
single limb support; SW: swing phase; SPT: step time; WS: walking speed; LR:
loading response; SP: second peak; PS: pre-swing; SPW: step width; FP: first
peak; SPL: step length; TC: total contact time; SDT: stride time; FR: foot rota-
tion; DLS: double limb support; SDL: stride length.

variability within the individuals with uTFA, the random forest results
suggest that they are among the most informative features for dis-
tinguishing gait patterns and may represent the most promising targets
for functional improvement.

The second hypothesis was supported as there were significant dif-
ferences in spatiotemporal and symmetry parameters among the three
distinct clusters of individuals with uTFA. These clusters exhibited
diverse gait patterns, with C1 displaying the lowest symmetry and the
shortest duration time of the single limb support on the prosthetic limb,
C2 demonstrating the highest symmetry and the longest bilateral stride
length, and C3 featuring the highest cadence. Training focused on
increasing step length and extending the duration time of the single limb
support on the prosthetic limb could potentially enhance gait symmetry
(C1 vs. C2). The extended single limb support allows for a longer stride
length, and relies on the strength of the hip muscle groups (Wentink
et al., 2013). For individuals in C1, targeted training to increase step
length and extend the duration of single limb support on the prosthetic
limb—such as by strengthening hip abductors and extensors—may help
improve balance and confidence in weight-bearing (Wakasa et al.,
2010). However, the influence of cadence on gait symmetry remains
inconclusive when comparing C2 and C3. While C3 exhibited more
asymmetry compared to C2, the difference did not reach statistical sig-
nificance. For individuals in C3, who already have high cadence but
exhibit asymmetry, interventions aimed at modulating cadence and
increasing stride length may help enhance stability and improve overall
gait symmetry by reducing reliance on high cadence alone.

In practice, gait symmetry is influenced by numerous factors, many
of which may contribute to an increased step length. Achieving a rela-
tively longer step length on the intact side often depends on a sufficient
duration of single limb support on the prosthetic side, which requires
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Table 4 Table 4 (continued)
Mean value, SD value, normality, p-value, and post-hoc analysis of spatiotem- Parameters Clusters b- Post-hoc
poral and vGRF parameters. value
C1 c2 c3 . C1- C1- C2-
Parameters Clusters p- Post-hoc (main c2 c3 c3
value effect)
C1 c2 C3 . C1- C1- C2-
(main c2 c3 c3 SPL IL (cm) 37.0 42.6 30.6 0.02* 0.30 0.21 0.02*
effect) £47 +46 £35
STA PL (5) 1.0l 100 077  0.04* 098 005 007 SDL (cm) 66.9 876  59.5  0.01* 005 060  0.01*
+ + + + + 8.0 +9.2
0.07 017  0.03 10.3
STAIL (s) 123 110 090  0.02* 0.44  0.02* 0.13 SPW (cm) 213 147 218 012 — — —
+ + + + 4.8 + 0.5 +5.1
0.11 0.17 0.03 FP PL (%BM) 88.4 71.9 69.0 0.30 — — —
LR PL (s) 037 028 025  0.05 015  0.05* 0.75 + £99 &+
4 + 4 20.5 14.1
0.04 0.06 0.04 FP IL (%BM) 61.5 62.4 69.0 0.58 — — —
LR IL (s) 028 027 020  0.07 — — — +55  £65 %
+ + + 13.8
0.04 0.05 0.02 SP PL (%BM) 74.4 76.4 87.7 0.44 — — —
SLS PL (s) 0.36 0.45 0.32 0.05 — — — + + +
4 + 4 12.4 13.6 13.0
0.03 0.08 0.05 SP IL (%BM) 74.5 82.0 87.2 0.47 — — —
SLS IL (s) 058 056  0.45 0.11 — — — = + +87
4 + 4 141 13.1
0.06 0.09 0.04 Abbreviations: C1: cluster 1; C2: cluster 2; C3: cluster 3; PL: prosthetic limb; IL:
PS PL (s) 0.28 0.27 0.20 0.07 — — — . .
i L L intact limb; C1-C2: post-hoc between cluster 1 and cluster 2; C1-C3: post-hoc
0.04 0.05 0.02 between cluster 1 and cluster 3; C2-C3: post-hoc between cluster 2 and cluster 3;
PSIL (5) 0.37 0.28 0.25 0.05 0.15 0.05* 0.75 STA: stance; LR: loading response; SLS: single limb support; PS: pre-swing; SW:
+ + + swing phase; DLS: double limb support; SPT: step time; SDT: stride time; SPL:
0.04 0.06 0.04 step length; SDL: stride length; SPW: step width; FP: first peak; SP: second peak;
SW PL (s) 0.58 0.56 0.45 0.11 — — — BM: body mass. An asterisk (*) indicates a significant difference with p < 0.05.
+ + +
0.06 0.09 0.04
SWIL (s) (j):.36 (j):.45 Oi.SZ 0.05 — — — Table 5
0.03 0.08 0.05 Mean value, SD value, normality, p-value, and post-hoc analysis of absolute
DLS (s) 0.65 055 045  0.04* 0.36  0.04* 0.32 symmetry index parameters.
§06 (:)E 10 0106 Parameters Clusters p-value Post-hoc
! . ! 0, -_— H
STAPL(%) 637 641 633 092 — — — oo c c2 c3 S;;:::) ci-c2  Cl- C2-
+1.8 +26 +28 C3 C3
STA IL (%) 77.3 71.3 74.0 0.04* 0.03* 0.26 0.39 ASI STA 19.4 10.7 15.7 0.01* 0.01% 0.27 0.12
. £17  +13  £36 £31 +£28 +22
LR PL (%) 234 181 209 009 - - - ASILR 286 129 232 025  — - -
+ 0.6 + 1.7 + 4.1 " " 188
LR IL (%) 17.6 17.3 16.4 0.82 — — — 115 11.7
615 pL (0%) ;227-3 ;827-8 ;62(.)3 oot 003 o025 038 ASI SLS 464 219 348 0.01*  <0.01* 019 013
0 - : - : . : - +75 +45 77
SLS IL (%) islrf ;193. ;637'5 0.92 — — — ASLPS 86 129 22 025 = - -
. . . . + + + 8.8
+1.8 + 2.6 + 2.8 11.5 11.7
PSPL (%) 176 173 164 082 - - - ASI SW 463 219 348 0.01*  <0.01* 015  0.10
+2.3 + 2.8 +2.3 477 446 477
PSIL (%) 13646 18-117 10;191 0.09 - - - ASI SPL 342 66 145  <0.01*  <0.01* 0.02*  0.40
SW PL (%) 363 359 367 0.92 — — — 88 £38 77
. . . . ASI SPT 15.8 12.7 12.5 0.67 — — —
+1.9 + 2.6 + 2.9 +48 +68 1924
SW IL (%) 22.7 28.8 26.0 0.04* 0.03* 0.25 0.38 ASI FP 33.3 23.8 22.1 0.70 o _ _
bLS (o +1.7 + 1.3 + 3.6 + + +
o) 41.0 35.3 37.3 0.34 — — — 22.8 12.2 15.1
+£28 +£38 462 ASI SP 103 7.5 11.3 0.65  — — —
SPT PL (s) 0.85 0.82 0.65 0.02* 0.84 0.02* 0.04* 463 156 +392
+ + +
0.08 0.11 0.02 Abbreviations: C1: cluster 1; C2: cluster 2; C3: cluster 3; PL: prosthetic limb; IL:
SPT IL (s) 0.73 0.73 0.57 0.09 — — — intact limb; C1-C2: post-hoc between cluster 1 and cluster 2; C1-C3: post-hoc
+ + + between cluster 1 and cluster 3; C2-C3: post-hoc between cluster 2 and cluster 3;

0.06 0.14 0.02 ASI: absolute symmetry index; STA: stance; LR: loading response; SLS: single

SDT () :1t.58 i’ss li.ZZ 0.04* 0.97 0.05 0.08 limb support; PS: pre-swing; SW: swing phase; SPL: step length; SPT: step time;
013 0.25 0.04 FP: first peak; SP: second peak. An asterisk (*) indicates a significant difference
Cadence 76+ 80+ 99+  0.03* 089  0.03* 0.06 with p < 0.05.
(steps/ 6 14 3
min) strong support and stability—conditions associated with well-developed

SPL PL (cm) 29.8 44.9 28.9 0.06 — — —

85 136 464 hip musculature on the prosthetic side. Strengthening the hip muscles

benefits all individuals with uTFA (Riley et al., 2007), although the in-
tensity of training may vary. For instance, C1 represents the gait pattern
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most in need of hip muscle strengthening, while C3, where symmetry is
relatively better, may benefit more from cadence adjustment.

Although changes in double limb support phase in the gait of in-
dividuals with uTFA have been widely recognized in rehabilitation
settings (He et al., 2024), our study is the first to show that asymmetry
and spatiotemporal measures can be used to classify individuals with
uTFA into three reproducible clusters, each showing a distinct gait
pattern. The inherent complexity of uTFA gait makes traditional clas-
sification approaches insufficient (Harandi et al., 2020; Heitzmann
et al., 2020). Our findings offer a clinically meaningful framework for
establishing a more consistent gait taxonomy that can support person-
alized rehabilitation strategies. From a broader clinical perspective,
these insights are valuable. For example, in individuals assigned to C1 or
C3, therapists could prioritize addressing major asymmetries such as
unequal single limb support phase or swing phase duration before fine-
tuning cadence or other secondary gait mechanics. Furthermore, the
identified clusters can inform clinical decisions regarding prosthetic
alignment and component selection. For instance, individuals exhibiting
reduced single limb support duration might benefit from enhanced knee
stability settings, while those with high cadence and short step length
could improve their gait by increasing the initial flexion angle of the
socket to enhance hip extension during terminal stance or by incorpo-
rating dynamic response foot components.

Our findings both confirm and extends the results of a previous
clustering study (Ichimura et al., 2022). Similar to their hierarchical
approach, our methods identified three distinct gait clusters among in-
dividuals with uTFA, reinforcing the notion that uTFA gaits is not a
single, homogeneous pattern. However, the studies differ in the vari-
ables driving cluster formation and consequently in their clinical im-
plications. In the previous study (Ichimura et al., 2022), clustering was
based on cadence and step length data collected across eight fixed
treadmill speeds, with cluster structure influenced primarily by partic-
ipant body size and prosthetic knee components. In contrast, our study
used sixteen features derived from symmetry indices and vGRF data
collected at each participant’s self-selected speed. Taken together, these
two studies offer complementary insights: step length and cadence
patterns capture how individuals with uTFA adapt across a range of
walking speeds, whereas symmetry-based features show how much their
gait deviates from bilateral norms at their preferred speed. Clinically,
the cadence/step length-based clusters suggest tailoring interventions to
anthropometric factors and prosthetic technology, whereas our
symmetry-based clusters support a progressive rehabilitation pathway,
first targeting fundamental gait asymmetries (especially the single limb
support and swing phases), and then fine-tuning cadence and stride
parameters to optimize functional performance.

The study has several limitations. First, the analysis of feature
importance focused mainly on symmetry parameters derived from
spatiotemporal and vGRF data. Future research should include a broader
range of gait parameters, such as joint angles and moments, for a more
comprehensive assessment. Second, all available features were
employed in the clustering process without prioritization. The limited
number of features could have led to an incomplete characterization of
gait patterns. Further investigations should explore features selection
strategies that consider varying levels of importance. Third, treadmill-
based assessments may not fully capture overground gait characteris-
tics, where environmental factors and natural walking patterns differ
(Riley et al., 2007). Finally, the sample size was modest. Although
previous clustering studies on individuals with uTFA typically enrolled
10-20 participants (Jamieson et al., 2023; Liu et al., 2022), larger co-
horts would enable more robust cluster structures and finer distinctions
among gait types. In this study, each cluster contained only four par-
ticipants, so between-cluster comparisons should be considered
exploratory and interpreted with caution. Furthermore, variability in
prosthetic knee and foot components across participants may have
amplified the limitations of the small sample size and potentially affect
the clustering outcomes. Future research should aim to reduce
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component variability to enhance the reliability and generalizability of
clustering outcomes.

In conclusion, this study highlights the importance of swing phase
and single limb support duration symmetries as key features for dis-
tinguishing individuals with uTFA from non-disabled, as determined by
the random forest algorithm. Subsequently, k-means clustering algo-
rithm identified three distinct gait patterns among individuals with
uTFA. These patterns are categorized as follows: C1, characterized by
the lowest symmetry and shortest single limb support duration, could
indicate a clinical need for interventions focusing on balance and weight
acceptance; C2, exhibiting high symmetry and extended stance dura-
tion, aligns with stable gait patterns typically targeted for endurance and
strength training; C3, with moderate symmetry but high cadence, sug-
gests a focus on cadence modulation and gait stability. Customized
rehabilitation training tailored to specific gait deviation patterns may
better support individuals with uTFA in improving their gait
performance.
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